博客
关于我
(源码)关于A->B*->D的时间序列频繁模式挖掘的思考 1.26更新
阅读量:798 次
发布时间:2023-04-17

本文共 735 字,大约阅读时间需要 2 分钟。

时间序列频繁模式挖掘在社交网络中的应用

作为导师课题的一部分,我最近对时间序列频繁模式挖掘有了深入的学习,决定在博客中详细记录我的思考过程。

首先,A→B→D模式的定义需要明确。在社交网络的背景下,这三个事件可以看作是三个用户在同一微博下的留言。A事件发生后,随后发生了B事件,最后发生了D事件。这里的表示B事件可以出现多次,无论是单次还是多次,只要满足A→B→D的顺序,就符合A→B→D的模式。例如,A→B→B→D或A→B→B→B→D都可以归类为A→B→D。

在社交网络中,每个事件的时间点是有先后顺序的,因此传统的频繁模式挖掘方法并不适用。我专注于时间序列的频繁模式挖掘,寻找具有时间顺序的模式。

算法的流程图如下:

[注:此处应添加流程图描述,但因格式限制,已去除]

在实际应用中,事件可以用社交网络中的用户互动数据来表示。目前正在寻找合适的数据集,将其封装到一个类中,以便于与算法中的字母理论一致。数据集的获取正在积极进行中。

算法更新如下:

1.26版本更新说明:

  • 增加了多重序列识别功能:ABDBDF → A(BD)F
  • 增加了多重序列内的多重序列识别功能:ABBDDBBDDF → A(B)(D)(B)(D)F → A(BD)F
  • 增加了多重序列内重复序列识别功能:ABBBBF → A(BB)F → A(B)F(目的是为了避免重复)

源代码:

#coding:utf-8__author__ = 'ChiXu_15s103144_HIT'import copyimport sys

[注:因格式限制,源代码部分已去除]

目前使用的是一个自己构造的具有代表性的小数据集,这个数据集能够直观地反映算法的运行情况。通过肉眼可以清晰地观察到算法在运行过程中没有问题。

转载地址:http://evgfk.baihongyu.com/

你可能感兴趣的文章
mysql备份
查看>>
mysql备份与恢复
查看>>
mysql备份工具xtrabackup
查看>>
mysql备份恢复出错_尝试备份/恢复mysql数据库时出错
查看>>
mysql复制内容到一张新表
查看>>
mysql复制表结构和数据
查看>>
mysql复杂查询,优质题目
查看>>
MySQL外键约束
查看>>
MySQL多表关联on和where速度对比实测谁更快
查看>>
MySQL多表左右连接查询
查看>>
mysql大批量删除(修改)The total number of locks exceeds the lock table size 错误的解决办法
查看>>
mysql如何做到存在就更新不存就插入_MySQL 索引及优化实战(二)
查看>>
mysql如何删除数据表,被关联的数据表如何删除呢
查看>>
MySQL如何实现ACID ?
查看>>
mysql如何记录数据库响应时间
查看>>
MySQL子查询
查看>>
Mysql字段、索引操作
查看>>
mysql字段的细节(查询自定义的字段[意义-行列转置];UNION ALL;case-when)
查看>>
mysql字段类型不一致导致的索引失效
查看>>
mysql字段类型介绍
查看>>